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Abstract
Nanolaminates such as the Mn+1AXn (MAX) phases are a material class with ab initio derived
elasticity tensors published for over 250 compounds. We have for the first time experimentally
determined the full elasticity tensor of the archetype MAX phase, Ti3SiC2, using polycrystalline
samples and in situ neutron diffraction. The experimental elastic constants show extreme shear
stiffness, with c44 more than five times greater than expected for an isotropic material. Such
shear stiffness is quite rare in hexagonal materials and strongly contradicts the predictions of all
published MAX phase elastic constants derived from ab initio calculations. It is concluded that
second order properties such as elastic moduli derived from ab initio calculations require
careful experimental verification. The diffraction technique used currently provides the only
method of verification for the elasticity tensor for the majority of new materials where single
crystals are not available.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Single crystal elastic constants are fundamental to understand-
ing phase transitions, and a range of mechanical, fracture, wear
and electro-mechanical properties. Sizeable single crystals
readily yield the full elasticity tensor using ultrasonic wave
speed or resonance methods. Crystals of 4–5 mm or larger
are preferred although resonant ultrasound spectroscopy has
made it feasible to use crystals as small as 1 mm [1]. Only the
bulk elastic constants (Young’s modulus, bulk modulus, shear
modulus and Poisson’s ratio) can be determined for materials
where large single crystals cannot be grown. As a majority
of new materials are not available as single crystals, there is a
growing tendency to explore elastic properties through ab ini-
tio calculations. A class of materials to which this approach
has been widely applied is the Mn+1AXn or MAX phases in
which M is an early transition metal, A represents an A-Group
element such as Si, Al, Ge, Ga, In or Sn and X is either C
or N. MAX phases are of interest in a number of applications

due to their interesting combination of metallic and ceramic
properties [2, 3] coupled with properties unique to this material
class [4]. The crystal structure of the archetype MAX phase,
Ti3SiC2 is shown in figure 1.

MAX phase structures are hexagonal and consist of n
layers of binary carbide (in this case TiC) intergrown with
a single layer of the A element (in this case Si) [5, 6].
Both the layered crystal structure with long bonds between
the A layer and adjacent X layers, and a tendency to fail
by cleavage, led to early speculation concerning anisotropic
properties [6]. As single crystals have continued to prove
elusive, the physical properties have been explored using
ab initio calculations [7–9]. Mechanical perturbation of the
optimized model can supply estimates of the elasticity tensor.
Such calculations have now been published for a great many
MAX phases including 243 with n = 1 [10–16] and more
than 10 with n = 2 or greater [14, 17–20]. In addition,
calculated elastic constants have been published for related
ternary carbides with more complex layered intergrowth

0953-8984/10/162202+05$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA1

http://dx.doi.org/10.1088/0953-8984/22/16/162202
http://stacks.iop.org/JPhysCM/22/162202


J. Phys.: Condens. Matter 22 (2010) 162202 Fast Track Communication

Figure 1. Clinographic view of Ti3SiC2 crystal structure. Note
double layers of TiC octahedra interleaved by single layers of Si. The
unit cell with lattice parameters a = 3.0575 and c = 17.624 Å is
outlined.

structures [21]. Computed elastic constants fall into three
broad categories. The first, is quasi-isotropic meaning that the
following hold: c11 ≈ c33, c12 ≈ c13 and τ = 0.5(c11 − c13) ≈
c44. This group includes Ti3SiC2 [17]. In the second group,
the first two conditions are met however c44 is slightly greater
than τ—which we term slightly shear-stiff. The third group is
characterized by c44 < τ i.e. shear-soft. All three types are
illustrated in figure 2.

Elasticity tensors from ab initio calculations are often
published at very high precision and with error estimates
of equally high precision (as low as ∼0.03%), rivalling
that obtainable with standard single crystal measurement
techniques. Despite this apparent precision, widely different
elastic constants have been published in some cases by
different groups simulating the same compound. The only
experimental verification for such results is agreement with
the bulk elastic moduli where they are known. Unfortunately,
there are infinite combinations of single crystal elastic
constants that yield the same bulk elastic moduli and so a

means of experimentally verifying elasticity tensors derived
from ab initio calculations is urgently required. In this
paper, we present the first experimental determination of the
full elasticity tensor for a MAX phase, Ti3SiC2, using a
solid polycrystalline sample and neutron diffraction patterns
recorded from samples under in situ uniaxial stresses.

2. Analytical and experimental method

From shifts in the neutron diffraction peak positions, it is
straightforward to measure elastic strains within crystallites
having a common crystallographic vector (the scattering
vector) oriented to bisect the incident and diffracted neutron
beams. Many such strains, representing the average elastic
response of the diffracting crystallites within the material,
can be measured using a solid polycrystalline sample. In
principle, the single crystal elastic constants are then available
after applying a suitable tensor transformation and integrating
around the scattering vector [22]. However, in polycrystals
subjected to a uniaxial stress, the individual crystals experience
strains that depend on a number of factors. The first of these
is elastic anisotropy; an effect that is purely a function of the
single crystal elastic constants. The second factor is the degree
of texture (non-randomness) in the polycrystal. The third
factor is the effectiveness of stress and strain transfer across
grain boundaries—known as the micromechanical state [22].
To date, research relating single crystal to polycrystal elastic
properties, any one of these factors may only be determined
if the other two are known. In general, texture is relatively
easily measured, leaving only the elasticity tensor and the
micromechanical state unknown.

A new self-consistent energy balance model (SCEB) used
here assumes the micromechanical state of any polycrystal to
be located on the linear locus connecting states of uniform
stress (Reuss limit) and uniform strain (Voigt limit). Its
location is given by that point at which the microscopic
strain energy density Uint equals the macroscopic strain energy
density Uext, taking into account the texture of the specimen.

Figure 2. Typical representation surfaces for Young’s modulus (E) derived from ab initio calculations. The distance from the origin of the
figure is E in terapascal for (a) quasi-isotropic (Ti3SiC2) [17], (b) slightly shear-stiff (Nb2SnC) [12] and (c) shear-soft (Sc2AlC) [10]
examples.
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Figure 3. Pole figures of Ti3SiC2 for perpendicular reflections. Pole
figures were calculated from the neutron diffraction determined
orientation density function (ODF) [23] using data from the
diffractometer KOWARI at the OPAL research reactor at ANSTO.
The sample texture is effectively random as indicated by texture
index J = 1.03 [24]. Local areas of high intensity in the 001 pole
figure are due to a few large grains.

The energy balance point occurs when equation (1) is satisfied.

Uext = 1
2 A0l0 Eε2 = 1

2 A0l0

∫ 2π

0
E(ϕ)ε(ϕ)2V (ϕ) dϕ = Uint.

(1)
The macro-strain ε can be measured directly from the

strain gauges and relates to the external elastic energy Uext

via the macroscopic Young’s modulus E and the sample area
A0 and length l0. The internal strain energy Uint requires
knowledge of the population of different lattice planes (hkl)
as a function of orientation (or texture) expressed as V (ϕ),
the orientation dependence of Young’s modulus, E(ϕ) which
depends on the single crystal elasticity (compliance) tensor
ci j (si j ), and the internal strain, ε(ϕ). With this extra
constraint in place, we can simultaneously determine the single
crystal elastic constants and the micromechanical state of the
polycrystal. The process is facilitated by equations for the
relationship between single crystal elastic constants and strains
observed during in situ neutron diffraction experiments under
the Reuss or Voigt states [22]. For the Reuss state, equation (2)
describes the relationship between the elastic compliance (ratio
of strain to stress) measured parallel to the applied stress
〈s′

11〉, the Miller indices of the diffraction peaks hkl and lattice
parameters a, b and c via H = h/a, K = k/b and L = l/c.
Equation (3) gives the relationship 〈s ′

13〉 when the compliance
is measured perpendicular to the applied stress.

〈s′
11〉 = [16(H 2 + H K + K 2)2s11 + 9L4s33

+ 12(H 2 + H K + K 2)

× L2(2s13 + s44)]/(4H 2 + 4H K + 4K 2 + 3L2)2 (2)

〈s′
13〉 = [6(H 2 + H K + K 2)L2(s11 + s33 − s44)

+ 2(H 2 + H K + K 2)(4H 2 + 4H K + 4K 2 + 3L2)s12

+ (8H 4 + 16H 3K − 24H 2K 2 + 16H K 3

+ 8K 4 + 6H 2L2 + 6H K L2

+ 6K 2 L2 + 9L4)s13]/(4H 2 + 4H K + 4K 2 + 3L2)2. (3)

For the neutron measurements, the hot-pressed polycrystalline
sample with measured density of 4.175 g cm−3 (∼92%

Figure 4. strain data derived from neutron diffraction experiments
with in situ compressive stress (•). Miller indices indicate the
diffracting planes. Strains are given (a) parallel and (b) perpendicular
to the applied stress using a vertical offset. The solid lines represent
the fit to our SCEB micromechanical model. The strain quadric
derived from the experimental data is shown at (c).

theoretical density) was cut into a block 14.10 mm ×
13.85 mm × 30.66 mm. Young’s modulus was found to
be 330 GPa using the longitudinal ultrasonic wave speed
and Poisson’s ratio has been reported in the literature to be
0.2 [2]. Optical microscopy determined the grain size in
the sample to be 30–50 μm and the pores isolated. Prior
neutron and x-ray diffraction analysis of the material showed
no detectable amount of TiC or other common contaminant
phases. A full pole figure texture measurement of this sample
was completed on the instrument KOWARI at ANSTO in
Sydney using 5◦ steps in declination (1296 data points evenly
distributed in a hemi-sphere) and neutron wavelength 1.71 Å.
Neutron diffraction patterns for strain determination were
recorded using the time-of-flight diffractometer ENGIN-X [25]
at the ISIS pulsed neutron source. The Ti3SiC2 sample was
compressed uniaxially at stresses between 0 and 325 MPa in
25 MPa steps. Detectors located at 2θ = ±90◦ and positioning
the compression axis in the horizontal plane at 45◦ to the
incident neutron beam allowed simultaneous determination of
strains parallel and perpendicular to the applied stress.

3. Results and discussion

The texture results, shown in figure 3, indicate a texture
index of only 1.03 (where 1 is un-textured) indicating that the
sample texture may be safely ignored in our application of
equations (2) and (3). A selection of strains determined from
the neutron data is shown in figure 4. The elastic stiffness in
crystallographic directions perpendicular to the Miller–Bravais
indices shown is given by the reciprocal slope of these curves.
Several general trends may be deduced directly from the raw
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Table 1. Experimental elastic constants for Ti3SiC2 (GPa).

Model c11 c12 c13 c33 c44 τ = 0.5(c11 − c13)

SCEB 279 122 122 287 440 79
Reuss 276 108 94 270 458 91
Ab initio [17] 360 84 101 350 158 130

strain data shown in figure 4 and are not model dependent. The
elastic stiffness varies by a factor of two between the (0008)
and (101̄8) planes indicating considerable elastic anisotropy.
However, in figure 4(a), the data for basal plane 112̄0 and c-
axis (0006 and 0008) reflections are nearly parallel illustrating
near equality of c11 (s11) and c33 (s33). Instead, the anisotropy
is in the oblique directions indicating strong shear stiffness.
A detailed analysis of 24 reflections using the SCEB model
quantified the anisotropy and gave the elastic constants in
table 1.

Sources of error in the constants determined here
centre mainly on the sample quality and the assumed
micromechanical model. The sample is known to be phase
pure, however it contains around 8% by volume of porosity
which can be expected to make the measured elastic constants
smaller than for the fully dense material. The extent of this
reduction is however uncertain. Intuition suggests a linear
decrease in modulus proportional to the fractional porosity
for discrete pores. However, experiments on various porous
ferrous alloys indicated that for small strains and comparable
levels of porosity to this sample, there is no significant
reduction in the Young’s modulus until local plasticity at
the grain corners takes place [26]. Conversely, others have
reported that the modulus is reduced according to a power
law in the pore fraction (see for example [27]). Based upon
these precedents, we may estimate that the constants reported
in table 1 may be up to 10% lower than those for the fully
dense material. Possible errors introduced by the assumed
micromechanical model would be a model either too Reuss-
like or too Voigt-like. The Voigt model leads to isotropic elastic
constants which clearly contradicts the anisotropy visible in
the raw data. The elastic constants derived from a pure Reuss
model are given in table 1 for comparison and contain the same
essential features as those obtained from the SCEB model.
Due to the energy balance constraint, the bulk average Young’s
modulus computed from the constants from the SCEB model
in table 1 agree exactly with the value of 330 GPa measured
from the ultrasonic wave speed.

Further illustration of the high shear stiffness may be seen
in the Young’s modulus representation surface (figure 5). Such
large shear anisotropy is quite rare in hexagonal materials [28].
The shear anisotropy can be quantified by the ratio c44/τ which
is greater than 5.5 in this case. This is greatly at odds with
other materials prone to cleavage and mechanical delamination
such as graphite, the micas and MoS2 for which this ratio is
typically an order of magnitude lower than measured here for
Ti3SiC2 [28]. In those materials, in addition to extreme shear
softness, there is also strong axial anisotropy indicated by large
differences between c11 and c33.

Figure 5. Representation surface for Young’s modulus (E) derived
from neutron diffraction data. The distance from the origin of the
figure is E in terapascal to allow easy comparison with figure 2.

It is of interest to compare our results (table 1, figure 5)
with typical literature values for MAX phases (figure 2)
and particularly for Ti3SiC2 in figure 2(a). Some points
of similarity are present such as the approximate equality
of c11 and c33: and values for c12 and c13 in the order of
100 GPa. However, the absolute values of the experimental
constants differ greatly from the ab initio calculations. In
particular, the computed values of c12 and c13 are 20% lower
than those measured, c11 and c33 are more than 20% higher.
Disagreement between ab initio computed elastic constants
reported by different groups for the same MAX phase has been
remarked upon before however the differences were seldom
of this magnitude being usually smaller than 20 GPa [16].
More seriously, the computed shear modulus c44 is a factor of
three smaller than that measured. Apart from the numerical
difference, this indicates a completely different type of elastic
response by the material. It therefore appears that although
ab initio calculations routinely give sound agreement with
experimentally determined bulk elastic constants for some
materials, in this case prediction of the full elasticity tensor
for Ti3SiC2 has not been successful. This finding undermines
confidence in the single crystal elastic constants predicted for
other MAX phases and related compounds [10–21]. Recent
measurements of the electronic transport properties of Ti2GeC2

which indicate that predictions of those properties made by ab
initio calculation are also incorrect add to the uncertainty [29].
Given that the major difference between theory and experiment
in our case is in the shear modulus, it may be that current ab
initio models are unable to correctly simulate the 3d orbitals of
transition metals.

In addition to contributing a powerful new tool for
obtaining the elasticity tensor of new materials, the SCEB
model provides a framework for making experimental contact
with ab initio results. Applying this neutron diffraction
method may provide guidance to improved ab initio techniques
capable of better reproducing experimental determinations of
the anisotropic properties of materials.
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